Mechsafe Engineering - Overview

• Formed in 2016 in Perth, Western Australia

• Specialising in:
 • Advanced failure analysis
 • Advanced fatigue design and analysis
 • Reliability, availability & maintainability analysis
 • Engineering critical & fitness-for-service assessments
 • Strain gauging and condition monitoring
 • Cathodic protection and corrosion analysis
 • General design / verification / simulation
• Matt Rudas background
 • MPhil – WIT/University of Swansea (UK) - fracture of FRP composites
 • PhD - University of Western Australia - crack propagation in metal-ceramic composites
 • Fatigue design, failure analysis, stress analysis, strain gauging
 • Two Australian design patents (international patents pending)

• Strong background in both finite and boundary element techniques
Mechsafe Engineering - Overview
Mechsafe Engineering - Overview

- Gas turbine blade fatigue failure
- Railway bridge fatigue failure
- Rotating machinery fatigue failure
- Gear tooth failure
- Shaft fretting fatigue failure
- Rolling contact fatigue failure
- Rail head check fatigue failure

Image source: eurailscout.com
Engineering Failure Analysis

• Component Failure Analysis (CFA)
 • Considers physical influences such as loads, material properties, environment
 • Identifies failure mechanism

• Root Cause Investigation (RCI)
 • Increases the detail of a CFA
 • Considers human factors

• Root Cause Analysis (RCA)
 • Causal factor charting
 • Considers management systems
 • Interested in causes over which there is control
Component Failure Modes

- Fatigue (44% - Reliability Center, Inc.)
 - Poor design
 - Incorrect operation
 - Incorrect assembly/installation
 - Change in operating parameters
- Corrosion
- Wear / maintenance failure
- Manufacturing
 - Heat treatment

Image source: reliasoft.com
Component Failure Modes

- Overload
 - Plastic collapse
 - Instability (buckling)
- Serviceability
 - Vibration
 - Deflection

Image source: shellbuckling.com
Fatigue Failure

- Fatigue failure
 - Initiation
 - Welded vs cast/machined/forged
 - $S-N / \varepsilon-N$
 - Propagation/brittle fracture
 - Crack growth laws e.g. Paris, Forman
 - Linear elastic fracture mechanics
 - Ductile brittle transition
Fatigue Failure

• Accurate analysis requires accurate inputs:
 • Loads/stresses
 • Strain gauges
 • Pressure transducers for hydraulics
 • Numerical analysis
 • Material properties
 • MDR’s
 • Hardness testing
 • Metallurgical analysis
 • Fracture parameters
 • Stress intensity factors
Fatigue Failure

• Fracture parameters are difficult to determine
 • AS 3788 - Pressure equipment - In-service inspection
 • Simplified fracture mechanics and corrosion assessments
 • BS 7910 - Guide to Methods For Assessing the Acceptability of Flaws in Metallic Structures
 • Failure analysis, acceptance criteria, life extension, justification of deviations from a design code
• Numerical analysis
Numerical Analysis

• Unlike codes, not restricted by:
 • Simplistic geometric assumptions
 • e.g. flat plates, tubes/pipes
 • Crack propagation always straight/planar
 • Simplistic assumptions regarding the loads
 • Changing stress fields during crack propagation
 • Rotating principal stress directions

• Numerical analysis avoids the conservatism required by the assumptions made using hand calculations
Numerical Analysis

• Mechsafe staff have been using BEASY for 20+ years
• Boundary element based – DBEM crack modelling
• Non-linear contact and crack face loads
• Automatic crack growth
 • As the crack grows, K values along the crack front and the fatigue growth law determine the new crack front shape
 • Cracks can grow round corners and change shape as determined by the geometry and loading
• Any crack shapes can be added to a crack library
Model Configuration
Flaw Definition - Library
Flaw Definition - User Defined

- User defined cracks can be added to the crack library if required.
- This process uses a mesh of the required crack along with some additional crack front & breakout edge data.
Material Properties

- NASGRO material property database is in software
- User defined values can be added to the model
- Tabulated da/dN (crack growth rate) data can be used
Non-planar Flaw Fracture Assessment

Images courtesy BEASY UK
Automatic Crack Propagation

Images courtesy BEASY UK
Fretting Fatigue – Contact with Crack Growth

Images courtesy BEASY UK
Post Processing Tools

Images courtesy BEASY UK
BEASY Defect Scanner

- Produces a map of critical crack sizes
 - Threshold for crack growth
 - Critical size for fracture

Images courtesy BEASY UK
Damage Tolerance & Design of Repairs

• All techniques discussed here can provide the following information
 • growth rates of cracks
 • time to reach the critical size
 • a new value of operational load to slow crack growth to an allowable rate
 • a new value of operational load to stop any crack growth at all
 • the effectiveness of repair methods that don’t completely eliminate the presence of the cracks
 • a sensitivity study of the effect of errors in the measurement of the crack size using NDT, if different NDT methods are giving different results
 • inspection intervals and locations
Summary

• Equipment failure, unnecessary maintenance shuts and badly designed repairs can cost operators large sums.
• These costs can be avoided by the application of predictive assessments.
• Modern numerical techniques and software enhances fracture mechanics assessments, and makes them more affordable.
• The information that these assessments provide is essential for critical asset management and maintenance strategy considerations, resulting in cost savings, less equipment downtime and accident prevention.